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The theory of the absorption of a weak optical pulse by an optically dense medium is shown to lead
to unphysical results unless the radiation field is quantized. In contrast to the photoelectric effect, the
atom-field dynamics for pulsed field absorption can be obtained using elementary quantum
mechanics without imposing any assumptions on the nature of the detection process. As such, pulsed
field absorption offers distinct advantages over the photoelectric effect as a proving ground for field
quantization. If the classical field pulse is replaced by a quantized, multimode field state, many
classical field results are recovered without the inconsistencies that arise in the classical field
calculation. © 2011 American Association of Physics Teachers.
�DOI: 10.1119/1.3549235�
I. INTRODUCTION

Processes such as the photoelectric effect and Compton
scattering are given as textbook examples of the need to
quantize the radiation field in free space, that is, evidence for
photons. However, calculations of both the photoelectric ef-
fect and the Compton scattering can be carried out using
classical excitation fields.1 Lamb and Scully2 showed that
without resorting to field quantization, all the features of the
photoelectric effect explained by Einstein in his 1905 paper3

can be recovered. Thus, the justification given for field quan-
tization in most textbooks is not convincing.

The Lamb–Scully calculation is correct as far as it goes.
However, there are certain limits for both the photoelectric
effect and the Compton scattering that cannot be explained
consistently using pulsed classical radiation fields. For the
photoelectric effect, there are problems when the energy in
the pulse is less than or on the order of the work function of
the metal. In the Compton effect, there are problems with the
classical field description when the pulse energy is equal to
the change in energy undergone by the electron in the scat-
tering process.

To show that the assumption of classical fields leads to
erroneous results, it is necessary to include changes in the
classical field pulse resulting from interaction with matter.
Unfortunately, such a calculation is not easy for the photo-
electric effect and Compton scattering. However, if we con-
sider absorption of a classical pulse by an optically dense
medium, it is relatively easy to account for the field dynam-
ics using Maxwell’s equations. The field is simply absorbed
as it propagates in the medium. The interaction of the clas-
sical field pulse with the atoms in the ensemble is treated by
elementary quantum mechanics. With such a model, we can
understand quickly that field quantization is needed for a
consistent picture of matter-field interactions.

Imagine that the medium consists of an ensemble of two-
level atoms with transition frequency �0. A classical field
pulse with energy ��0 is incident on the medium and is
totally absorbed. We will show that despite the fact that the

pulse is totally absorbed, there is a probability of 1 /e that all
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the atoms remain in their ground states, which is a paradoxi-
cal result. Moreover, there is a nonvanishing probability to
have more than one atom excited by the pulse, a process that
violates energy conservation. This simple example shows
that a classical field description fails if the pulse energy is
comparable to a relevant quantum transition frequency. We
argue that the interaction of any classical field pulse with a
two-level quantum system leads to inconsistencies if the field
is not quantized.

Our goal is to provide a calculation of field absorption,
accessible to advanced undergraduate and beginning gradu-
ate students, that demonstrates the need for field quantiza-
tion. We show that all the features of the classical field cal-
culation are reproduced if the classical field is replaced by a
multimode quantum coherent state, but none of the inconsis-
tencies present in the classical field calculation persist when
the quantized coherent state field is used. This calculation
represents a more convincing argument for the need to quan-
tize the field than do discussions of the photoelectric effect
and Compton scattering.

As with the photoelectric effect and Compton scattering,
our argument relies on the quantized nature of matter. From
an operational point of view, it seems to be necessary to look
at the interaction of the radiation field with a quantized ma-
terial system to show that it is necessary to quantize the field.

II. CLASSICAL PULSE ABSORPTION

We consider the absorption of a classical optical pulse by
an optically dense medium. The field evolution is described
by Maxwell’s equations and the atom-field interaction is
treated quantum mechanically. The polarization of the me-
dium that leads to field absorption is calculated as the expec-
tation value of the dipole moment of the atoms, as in stan-
dard semiclassical theories involving the Maxwell–Bloch
equations. The problem of a classical pulse propagating in a
medium consisting of an ensemble of two-level atoms is usu-
ally complicated due to pulse distortion and reshaping as the
pulse propagates in the medium. To simplify the calculation,

we adopt a model in which, although optically dense, the
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medium has an effective index of refraction equal to unity
for the incident pulse, and the pulse propagates without
shape distortion due to inhomogeneous broadening. The only
effect of the medium is to result in an exponential decrease
in the pulse intensity as it propagates in the medium.

To arrive at this simplified situation, we make a number of
assumptions that do not compromise the underlying physics
of interest in this paper. The medium consists of an inhomo-
geneously broadened ensemble of stationary, two-level at-
oms located uniformly in a cylinder with cross-sectional area
A and length L0 �see Fig. 1�a��, located between Z=0 and
Z=L0. The ground state of atom m is denoted by �am�, its
excited state by �bm�, and its transition frequency by �m. Due
to inhomogeneous broadening, the atoms have a distribution
of atomic transition frequencies centered about the central
frequency �0. The detuning of �m from the central frequency
�0 is denoted by

�m = �m − �0. �1�

It is assumed that the distribution of �m is governed by

F��m� =
1

��
e−�m

2 /�2
, �2�

where � is a measure of the inhomogeneity of the sample.
The excited state decay rate of the atoms is equal to �.

A classical pulse is incident from the left. The pulse,
which has a cross-sectional area A to match the sample
cross-sectional area, is polarized in the x direction and propa-
gates in the z direction. The pulse is transform-limited with a
temporal pulse width �. It is assumed that the spectral width
of the pulse, ��=�−1, is much less than �, ensuring that each
frequency component of the field is absorbed equally by the
sample; the pulse duration is much less than the excited state
lifetime of the atoms and any transverse relaxation rate, al-
lowing us to neglect any decay as the pulse excites an atom;
and the energy in the pulse is equal to ��0, the average
excitation energy of an atom in the sample.

We choose the energy in the pulse as ��0 because it al-
lows us to see in a dramatic fashion the unphysical results
that come from the assumption of a classical field pulse.
However, any field energy would work equally well. The
field pulse is not a single photon pulse because we are con-
sidering a classical field. It is a pulse with a well-defined

Fig. 1. �a� A classical field pulse is incident on a medium of inhomoge-
neously broadened atoms. �b� The field enters the medium and propagates
with speed c and without distortion, but is exponentially damped in the
medium.
total energy ��0. For a classical field, any energy is allowed.
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The medium is taken to be optically dense so that �L0
�1, where � is the absorption coefficient of the medium. To
neglect the effects of atomic fluctuations, we assume that the
number of atoms in a slice of the medium of length dZ=	0
=2
�0 /c is much greater than unity, that is,

�A	0 � 1, �3�

where � is the atomic density. Equation �3� is the validity
condition for the use of Maxwell’s equations for the field
variables that are macroscopically averaged over a slice of
the medium with a thickness that is much less than a wave-
length so that in such a slice the spatial phase of the field is
the same for all the atoms. In contrast, we assume that

�	0
3 � 1 �4�

to guarantee that the index of refraction of the medium is
approximately equal to unity and atom-atom interactions can
be neglected.4 Equations �3� and �4� imply that A�	0

2,
allowing us to neglect diffraction of the pulse.

The result of all these assumptions is that the pulse enters
the medium without reflection and propagates in the medium
with exponentially decreasing amplitude but without shape
distortion �see Fig. 1�b��. We assume that the pulse travels at
most a few pulse widths in the medium before it is absorbed
and consider only times sufficiently short to ensure that the
atoms do not decay, but sufficiently long to guarantee that
the pulse has been totally absorbed. In other words, we con-
sider only times for which the optical pulse has transferred
all its energy to the internal energy of the atoms.

As we have stressed, all the assumptions of the medium
and the incident pulse are adopted to simplify the calcula-
tions. The same inconsistencies that we will find would arise
even if these assumptions were relaxed. There are physical
systems that satisfy all our assumptions. For example, if pi-
cosecond pulses are sent into a medium whose active atoms
consist of impurity ions embedded in a host material,5 all our
assumptions can be realized.

The initial electric field is taken as

E�Z,0� = 1
2 x̂E0eik0Zf�Z + Z0� + complex conjugate, �5�

where f�Z� is a smooth, positive envelope function centered
at Z=0 with width ��Z��Z0 �Z00� and E0 �assumed real�
is the pulse amplitude. It is assumed that the amplitude is
constant over the cross-sectional area A of the medium and
zero outside this range. The initial pulse is centered at
Z=−Z0�0. The pulse is quasimonochromatic, k0��Z��1,
and the parameter k0 serves as the average wave number.

For definiteness, we take the envelope function to be

f�Z� = e−Z2/2��Z�2
. �6�

The energy in the initial pulse, W0, is set equal to ��0; that
is,

W0 =
1

2
�0E0

2A�
−�

�

f2�Z�dZ =
1

2
�
�0E0

2A��Z� = ��0, �7�

where �0 is the vacuum permittivity. We solve for E0 in
Eq. �7� and find

E0 = 	 2��0 
1/2

. �8�

�0A��Z��
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Once the pulse enters the medium, it decays exponentially.
That is, inside the medium the pulse electric field is given by

E�Z,t� = 1
2 x̂E0ei�k0Z−�0t�e−�Z/2f�Z + Z0 − ct�

+ complex conjugate, �9�

where �0=k0c and � is the absorption coefficient. For an
inhomogeneously broadened medium having a distribution
of frequencies given by Eq. �2� and for a pulse bandwidth
much less than the inhomogeneous width, c / ��Z�=�−1��,
the absorption coefficient is equal to6

� =
�
��0�2

��0c�
, �10�

where � �assumed real� is the x component of the dipole
matrix element between the ground and the excited states of
an atom.

As the pulse passes atom m located at Z=Zm, it excites
that atom. The atom-field interaction for this atom is taken to
be −�E�Zm , t�. As a consequence, it follows from
Schrödinger’s equation that the evolution of the excited state
amplitude b�Zm ,�m , t� for atom m �in the interaction repre-
sentation and in the rotating wave approximation� is gov-
erned by

ḃ�Zm,�m,t� = i��E�Zm,t�/2��a�Zm,�m,t� , �11�

where a�Zm ,�m , t� is the ground state amplitude of atom m.
The assumption that the pulse area is much less than unity
allows us to calculate the excited state amplitude using per-
turbation theory, that is, by setting a�Zm ,�m , t��1. With this
assumption and the use of Eqs. �6� and �9�, we find that the
excited state amplitude b�Zm ,�m� after the passage of the
pulse is

b�Zm,�m� = − i�e−�Zm/2eik0Zm�
−�

�

dte−t2/2�2
ei�mt

= − i�2
��e−�Zm/2eik0Zme−�m
2 �2/2, �12�

where �=−�E0 /2� is one-half the atom-field Rabi fre-
quency.

The resultant final state wave vector for the atoms in the
sample once the pulse is totally absorbed is

���Z1,Z2, . . . ,ZN;�1,�2, . . . ,�N��

= �
m=1

N

�a�Zm,�m��am� + b�Zm,�m��bm�e−i�mt� , �13�

where N=�AL0 is the total number of atoms in the sample
and a�Zm ,�m� is the ground state amplitude for atom m once
the pulse has passed. From probability conservation, it fol-
lows that

�a�Zm,�m��2 = 1 − �b�Zm,�m��2. �14�

The state vector �13� is a product state and there is no en-
tanglement. The average total energy in the sample, Wf, after

the pulse has been absorbed is
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Wf = 
m=1

N

��m�b�Zm,�m��2

→ ��A�
0

L0

dZ�
−�

�

d�F����� + �0��b�Z,���2, �15�

where the discrete sum has been converted to integrals over
space and frequency.

If we combine Eqs. �2�, �12�, and �15�, we find

Wf =
2
����2��A

�
�0
�

0

L0

dZ�
−�

�

d��� + �0�e−�Ze−�2�2
e−�2/�0

2

�16�

=
2
�2���A�0

�
=

�
�0A��Z�E0
2

2
, �17�

where the inequalities �L0�1 and ���−1 have been used.
With E0 given by Eq. �8�, it follows that

Wf = ��0, �18�

consistent with conservation of energy.
Although the average energy in the sample is ��0, there is

a probability that either no atom is excited or more than one
atom is excited. The probability for no atom to be excited is

P0 = �
m=1

N

�a�Zm,�m��2 = �
m=1

N

�1 − �b�Zm,�m��2� �19�

=1 − 
m=1

N

�b�Zm,�m��2

+
1

2! 
m,m�=1

N

�b�Zm,�m��2�b�Zm�,�m���
2�m,m� �20�

−
1

3! 
m,m�,m�=1

N

�b�Zm,�m��2�b�Zm�,�m���
2

��b�Zm�,�m���
2�m,m�,m� + ¯ , �21�

where �i,j,k,. . . vanishes if any of its two indices are equal and
is equal to unity otherwise. In the limit in Eq. �3�, we can set
�i,j,k,. . . equal to unity and replace the sums in Eq. �21� by
integrals of the type given in Eq. �15�. In this way, we find

P0 = 1 − S +
S2

2!
−

S3

3!
+ ¯ = e−S, �22�

where

S = ��A�
0

L0

dZ�
−�

�

d�F����b�Z,���2 = 1. �23�

Thus, we find that the probability that no atom is excited by
the pulse is equal to

P0 = 1/e . �24�

This result is nonphysical because if no atom is excited, the
pulse cannot be absorbed. Following a similar procedure, we
can show that the probability Pn that exactly n atoms are

excited �and N−n remain in their ground states� is given by
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Pn = Cn
N	1 −

1

N

N−n	 1

N

n

�25�

=
N�N − 1� . . . �N − n + 1�

n!
	1 −

1

N

N−n	 1

N

n

�
1

en!

�26�

for N�n. The detection of more than one excited atom
would violate energy conservation.

We are led to the important conclusion that inconsistencies
arise when considering a classical pulse incident on a quan-
tum mechanical medium when the energy in the pulse is on
the order of the excitation energy of a single atom in the
medium. These inconsistencies point to the need for a quan-
tized field description. The advantage of treating the absorp-
tion of a classical pulse over the photoelectric effect to show
that field quantization is needed is that probe absorption rep-
resents a fully solvable model in which we can see directly
the way in which a classical field assumption leads to physi-
cally inconsistent results.

III. QUANTIZED COHERENT STATE
PULSE ABSORPTION

Many of the features of the classical pulse problem are
reproduced if the classical field is replaced by a multimode
quantum coherent state of the field having average energy
��0. It is not necessary to go into a detailed calculation of
the effects of such a pulse on the medium, although such a
calculation can be done following the method used in Ref. 6.
Instead, we need only to look at the properties of the incident
field at t=0 to understand the dynamics of the problem.

We consider an effective one-dimensional problem corre-
sponding to a pulse having cross-sectional area A propagat-
ing in the z direction with polarization x̂. The positive fre-
quency component of the quantized electric field is

E+�Z� = ix̂
j
	 �� j

2�0AL

1/2

aje
ikjZ, �27�

where � j =kjc is the frequency of mode j, aj is the destruc-
tion operator for mode j, and AL is the quantization volume.
With periodic boundary conditions, kj =2
j /L, where j is an
integer �positive, negative, or zero�. The energy in the field is

2A�0�
−L/2

L/2

E j
−�Z� · E j�

+ �Z�dZ = �� jaj
†aj� j,j�. �28�

That is, the expectation value of the energy in mode j of the
field is equal to nj�� j, where nj is the average number of
photons in this mode. For future reference, we note that the
prescription for transforming from discrete to continuum
modes of the field is


j

→
L

2

�

−�

�

dk . �29�

The initial state of the field is taken to be the multimode
coherent state, which is denoted by

��� = ��1,�2,�3, . . .� = �
j

�� j� , �30�
where
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�� j� = 
nj=0

�
�� j�nje−��j�

2/2

�nj!
�nj� . �31�

Here, � j are chosen so that the expectation value of the elec-
tric field operator at t=0 coincides with the initial classical
field given in Eq. �5�.

It follows from Eqs. �6�, �27�, and �29� that the expectation
value of the field is

�E+�Z,t = 0�� = ix̂
j

�
�,��

	 �� j

2�0AL

1/2

eikjZ����aj����� �32�

=ix̂
j
	 �� j

2�0AL

1/2

� je
ikjZ �33�

→ix̂
L

2

�

−�

�

dk	 �kc

2�0AL

1/2

�ke
ikZ. �34�

In contrast, from Eqs. �5� and �6�, we find that the classical
pulse amplitude is

E+�Z,t = 0� =
1

2
E0x̂eik0Zf�Z + Z0�

=
1

2
E0x̂eik0Ze−�Z + Z0�2/2��Z�2

�35�

=
1

2
x̂	 2��0

�0A��Z��


1/2	 �Z

�2


e−ik0Z0

��
−�

�

dke−�k − k0�2��Z�2/2eik�Z+Z0�, �36�

where E0 was taken from Eq. �8�. If we compare Eqs. �34�
and �36�, we obtain

�k = − i	2�0��Z��


kcL

1/2

e−�k − k0�2��Z�2/2ei�k−k0�Z0. �37�

With this value of �k, the average energy in the field of this
multimode state is equal to

�W� = 
j

�� j�� j�2 →
Lc

2

�

−�

�

�k��k�2dk = ��0, �38�

as desired.
When this field enters the sample, it is totally absorbed,

just as in the classical case. As a consequence, irrespective of
the atom-field dynamics, the probability that n atoms are
excited is equal to the probability P�n� that there are n pho-
tons in the incident field pulse. There is a finite probability
P�0� that the quantized multimode coherent state field has no
photons. If we expand the initial state of the field in the
number state basis as

��� = ��1,�2,�3, . . .� = �
j


nj=0

�
�� j�nje−��j�

2/2

�nj!
�nj� , �39�
it is not difficult to calculate
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P�0� = exp�−  �� j�2� → exp	−
L

2

�

−�

�

��k�2dk
 =
1

e
,

�40�

where Eq. �37� was used with k evaluated at k0.
There is a probability equal to 1 /e that the quantized mul-

timode coherent state contains no photons. In other words, if
we repeat the experiment of sending this field into the
sample many times, no field is sent into the sample a fraction
1 /e of the times.

We can now understand the relation of this result to the
classical pulse case. For both classical and quantized fields,
the probability that no atoms are excited is identical. How-
ever, in the classical case, this result leads to a contradiction
because the incoming pulse has a well-defined energy equal
to ��0. In the quantized field case, there is no contradiction
because the field is not in an eigenstate of the energy for the
field. The average field energy is equal to ��0, but there is a
1 /e probability of having no photons in the field, which
maps into the corresponding probability to have no atoms
excited.

Similarly, we can show that

P�n� =
1

n!e 
m,m�,m�,. . .=1

N

��m�2��m��
2��m��

2
¯ �m,m�,m�,. . .

�41�

�
1

n!e	 L

2

�

−�

�

��k�2dk
n

=
1

n!e
�42�

where the probability to excite two photons in the same
mode is taken to be negligibly small. Equation �42� is con-
sistent with the classical field result for the excitation of n
atoms in the sample. Again, there is no inconsistency with
energy conservation for the quantized field case because the
field is not in an energy eigenstate, and there is some prob-
ability that the initial field pulse contains more than ��0 of
energy. On average, ��0 is transferred to the atoms. How-
ever, sometimes no energy is transferred and other times
n��0 �n�1� is transferred.

IV. CONCLUSION

We have shown that by considering the seemingly innocu-
ous problem of optical pulse absorption by an optically dense
medium, we are led to the conclusion that the radiation field
must be quantized if we are to avoid results that are incon-

sistent with reality. Although we made a highly restricted set
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of assumptions for our calculation, we did so only to sim-
plify the calculations and to illustrate the relevant physics. It
is not difficult to argue that inconsistencies arise whenever
any classical field pulse leaves atoms or a quantized material
system in a superposition of energy eigenstates. Because the
atoms are not left in an eigenstate of energy and because the
classical field pulse always has a definite energy, the entire
atom-field system no longer conserves energy. For example,
if a classical pulse interacts with a single two-level atom and
leaves it in an equal superposition of its ground and excited
states �separated by frequency �0�, the classical field energy
must be reduced by ��0 /2. However, if we measure the
atom in its ground state following the interaction, the energy
in the field pulse should be unchanged and not reduced at all.
We are led naturally to a contradiction because the final state
for our system cannot be an entangled state of the atom and
the �classical� field. The use of a quantized field state allows
for such entanglement.

In the article by Lamb and Scully,2 as in Einstein’s original
paper,3 it was assumed that any change in the energy in the
field produced by the medium could be ignored—in this
limit, a classical field description is valid. It would be inter-
esting to see if an analogous argument for field quantization
could be made without reference to a quantized material
system.
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