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Abstract
Time reversibility has been absent from some recently proposed quantum memory protocols
such as the atomic frequency comb (AFC) scheme. Focusing on AFC memory, we show that
quantum efficiency and fidelity are reduced dramatically, as a consequence of non-reversibility,
when the spectral width of the incoming signal approaches the memory bandwidth.
Non-reversibility is revealed through spectral dispersion, giving rise to phase mismatching. We
propose a modified AFC scheme that restores reversibility. This way, signals can be retrieved
with excellent efficiency over the entire memory bandwidth. This study could be extended to
other quantum memory rephasing schemes in inhomogeneously broadened absorbing media.

(Some figures may appear in colour only in the online journal)

1. Introduction

Rephasing processes in inhomogeneously broadened absorp-
tion lines [1–3] offer an attractive way to store and retrieve a
large number of optically carried temporal modes [4–7]. This
property raises increasing interest in the quest for multi-mode
quantum memories (QMs) for light [8–10].

In the first proposed rephasing QM scheme, known
as controlled reversible inhomogeneous broadening (CRIB)
[11–14], the retrieval step is devised to be the exact time
reversed copy of the storage phase. Perfect reversibility is
preserved even with broadband signals spanning the entire
absorption line, provided all the incoming spectral components
are completely captured in the memory material. The required
inhomogeneous broadening is generated by an external electric
field through the Stark effect. The frequency detuning is
reversed by Stark switching. Hence, atomic coherences can
be brought back in phase together and are able to restore
the original signal. To satisfy the time and space symmetry
requirement, the signal must be recovered in the backward
direction, where efficiency can reach 100%. To this end, the
initially excited coherences have to be converted into spin

or hyperfine coherences and back. In the forward direction,
retrieval efficiency drops to about 54%.

The practical implementation of CRIB led to the
emergence of a novel scheme, known as gradient echo
memory (GEM) [15–17], where the absorption line is not
inhomogeneously broadened locally. Instead, inhomogeneous
broadening only appears through integration over the material
depth. With GEM, 100% efficiency is expected in the forward
direction, in spite of imperfect reversibility. Actually, record
quantum efficiency (QE) has been reported recently in solid
[18] and gaseous [19] media. The lack of reversibility is
revealed by fidelity reduction [16, 20]. Experimentally, with
retrieval in the forward direction, one no longer needs ancillary
spin or hyperfine coherences, as in CRIB. Hence, GEM works
with two-level atoms.

Alternative rephasing techniques have been proposed
recently [21–25]. They avoid the frequency detuning reversal
step. Among those new protocols, atomic frequency combs
(AFC) have already given rise to a large harvest of promising
experimental results. In AFC-based memories, the signal is
captured by an evenly spaced spectral array of absorption
teeth. As a result, coherences are automatically phased back
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together after a delay given by the inverse spacing of the
absorption teeth. In contrast with CRIB, the revival step is
not time reversed with respect to the storage step. Actually,
the signal is restored with the same time order as the original
one. Using AFC, a much wider bandwidth with a much larger
temporal multi-mode capacity has been demonstrated than
with CRIB and GEM [26, 27]. In addition, for the first time in a
solid, storage and retrieval of photonic entanglement have been
demonstrated using AFC [28, 29]. However, those results have
been obtained with rather modest QE, presumably because of
practical difficulties in the absorption tooth array preparation.

Beyond practical limitations, one should question the lack
of temporal symmetry or reversibility in the latter processes.
In this paper, we examine this question in the specific case of
AFC-based memories. In section 2, we consider the capture
of an incoming quantum field by a finite-bandwidth AFC. In
section 3, we express the recovered signal and analyze the
negative impact of dispersion effects on AFC QE and fidelity.
We also delineate the difference between CRIB and AFC
regarding reversibility. In section 4, in the light of this analysis,
we propose a modified AFC (MAFC) scheme providing almost
100% QE and perfect fidelity over the whole spectral range
of the AFC filter. Finally, we briefly consider the extension of
this method to other non-reversible QM for light protocols.

2. Capturing the incoming signal

Following the basic scheme of photon echo QM, we consider
an ensemble of N three-level atoms initially prepared in
the ground state |1〉 = ∏N

j=1 |1〉 j. The optical transition at
frequency ω12; j to the upper level |2〉 j is excited by the
signal field Ap(τ, z). The quantum dynamics of the light–
matter system is described by linearized Maxwell–Bloch
equations. In the weak field limit, the jth atom coherence
S(τ,� j, z j) = |1〉 j j 〈2| obeys the equation

∂τ S(τ,� j, z) = − i(ωo + � j)S(τ,� j, z)

+ igAp(τ, z) exp{−iωpτ }, (1)

where ωo, ωp and � j = ω12; j − ωo respectively denote
the atomic transition central frequency, the signal field
carrier frequency and the jth atom detuning from the central
frequency. Time in the moving frame is represented by
τ = t − z/c. The photon–atom coupling constant is defined as
g = i℘

√
ωo/2�εoSo, where ℘, εo and � respectively stand for

the atomic transition dipole moment, the electric permittivity
and the Planck constant divided by 2π. Throughout the paper
we neglect the coherence decay, assuming the experiment
timescale to be much shorter than the coherence lifetime. The
radiative reaction of the atoms to electromagnetic excitation
is expressed at a macroscopic level, involving the average
over many atoms and substituting a continuous medium to the
discrete atom distribution. This scale change is mediated by
the macroscopic coherence

S(τ, z) =
∫

d�C(�)S(τ,�, z), (2)

where the average at position z is performed over the transition
frequency distribution C(�), centred at � = 0. The light field
propagation is then described by

∂zAp(τ, z) = iβ exp{iωpτ }S(τ, z), (3)

Figure 1. AFC filter C(�) uniformly engraved over the entire width
of an inhomogeneously broadened absorption line G(�). The initial
inhomogeneous width, the absorption tooth profile and the incoming
signal spectrum are respectively denoted as �in, κ(�) and Ap(�).

where β = π(noSo)(g∗/c) is the function of the atomic
concentration no, the light-beam cross section So and the
photon–atom coupling constant.

Let us consider an ideal AFC structure, uniformly
engraved over the entire available inhomogeneous width, as
depicted in figure 1:

C(�) = 1

κ(0)δ

[
�

(
�

δ

)
∗ κ(�)

]
G(�), (4)

where �(x) = ∑
n

δ(x − n) represents a Dirac comb, ∗ is

a convolution symbol, κ(�) stands for the profile of each
comb tooth. According to the �(x) definition, δ in equation
(4) denotes the tooth spacing. The widths of G(�) and κ(�)

are denoted �in and b, respectively. They satisfy the condition
b � δ � �in. Both G(�) and κ(�) are normalized according
to ∫

G(�)d� =
∫

κ(�) d� =1. (5)

The normalization factor [κ(0)δ]−1 ≈ b/δ makes C(�)

coincide with the initial distribution G(�) at the top of the
comb teeth. Solving the Bloch equation (1) and summing over
�, one obtains

S(τ, z) = ige−iωpτ

∫ τ

−∞
dτ ′Ap(τ

′, z)
∫

d�C(�)e−i�(τ−τ ′).

(6)

The Dirac comb satisfies the Fourier transform property∫
dx � (x) e−ixu = �

( u

2π

)
. (7)

Therefore,∫
d�C(�) e−i�t = 1

κ(0)δ

∑
n

κ̃

(
2πn

δ

)
G̃

(
t − 2πn

δ

)
, (8)

where f̃ (t) = ∫
d� f (�)e−i�t . Substitution into equation (6)

leads to

S(τ, z) =
∑

n

S(n)(τ, z), (9)

where

S(n)(τ, z) = ige−iωpτ
1

κ(0)δ
κ̃

(
2πn

δ

)

×
∫ ∞

0
dτ ′Ap(τ − τ ′, z)G̃

(
τ ′ − 2πn

δ

)
. (10)

Because of causality, expressed by the lower boundary in
the integral, the sum runs over positive n values only.

2



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 124003 S A Moiseev and J-L Le Gouët

According to this expression, the macroscopic coherence
revives periodically, with 2π/δ time intervals.

If the incoming signal is much shorter than 2π/δ, the
n-indexed terms do not overlap. Each represents the coherence
revival at time 2nπ/δ. The n = 0 term is involved in
the instantaneous signal propagation. Then, equation (3)
reduces to

∂zAp(τ, z) = − βg

κ(0)δ

∫ ∞

0
dτ ′Ap(τ − τ ′, z)G̃(τ ′), (11)

where we have replaced κ̃ (0) par 1, in accordance with the
normalization condition, and we have dropped the e−i(ωo−ωp)τ

′

factor, very close to unity (i.e. ωo
∼= ωp). The spectral

amplitude defined as Ãp(ω, z) = ∫ ∞
−∞ dτAp(τ, z) exp{iωτ }

satisfies the familiar equation

∂zÃp(ω, z) + i
ωp

2c
χ(ω)Ãp(ω, z) = 0, (12)

where the real and imaginary parts of susceptibility χ(ω)

respectively read

χ ′(ω) = c

ωp
α(0)

1

π
P

∫ ∞

−∞

G(�)/G(0)

ω − �
d�, (13)

χ ′′(ω) = − c

ωp
α(ω), (14)

where P denotes the Cauchy principal value and the linear
absorption coefficient is given by

α(ω) = 2πβg

κ(0)δ
G(ω). (15)

One easily solves equation (12) as

Ãp(ω, z) = exp
{
−i

ωp

2c
χ(ω)z

}
Ãp(ω, 0).

With respect to the initial atomic distribution, the
absorption coefficient is modified by the factor [κ(0)δ]−1 ≈
b/δ. When G(�) is symmetric, χ ′(0) = 0 and |χ ′(ω)|
increases almost linearly for |ω|/�in � 1.

Contemplating equations (12)–(14), one must remember
that they rely on the assumption that the incoming signal
spectrum is much broader than the absorbing comb spacing.
Hence χ(ω), representing a coarse graining approximation
of the comb susceptibility, is expressed in terms of the
AFC envelope G(�). Then χ(ω) exhibits the features
of an absorption line, with abnormal dispersion within
the absorption profile. Should the absorption coefficient
ωpχ

′′(ω)/c be large enough, this may result in negative group
velocity and so-called superluminal propagation [30].

As an illustration, let both G(�) and κ(�) be given a
Gaussian profile according to

G(�) =
√

ζ

π

1

�in
exp

(
−ζ

�2

�2
in

)

κ(�) =
√

ζ

π

1

b
exp

(
−ζ

�2

b2

)
,

where ζ = 4Ln(2) and �in and b stand for the full-width at
half-maximum (FWHM) of the respective shapes. Assuming
δ � b, substitution into equations (13) and (14) leads to

χ ′(ω) = − c

ωp
αo exp

(
−ζ

ω2

�2
in

)
Erfi

(
−

√
ζ

ω

�in

)

and

χ ′′(ω) = − c

ωp
αo exp

(
−ζ

ω2

�2
in

)
,

where αo = 2πb
δ

βg
�in

. Absorption equals dispersion at |ω/�in| =
0.425, which points out the importance of dispersion effects
when the signal spectral width approaches the AFC bandwidth.

3. Signal recovery

As already pointed out, the macroscopic coherence revives
periodically, giving rise to delayed responses. In the framework
of filtering by an infinitely broad AFC, an exact replica
of the incoming signal can be retrieved in the backward
direction at time 2π/δ with 100% efficiency [22]. This way,
AFC storage appears to be perfectly reversible. Emission
in the backward direction involves two counterpropagating
π -pulses. They convert the optical atomic coherence into a
long-lived coherence and back, extending the storage time
well beyond 2π/δ. When restored by the second π -pulse,
the optical coherence phase has been changed by 2kz, which
causes emission in the backward direction. In the case of
CRIB, perfect reversibility in the backward direction can
be achieved without the restriction of an infinitely broad
processing bandwidth [31]. We precisely aim at clarifying this
point in the case of AFC.

Following the lines of [22, 31], we restrict the discussion
to the backward retrieval scheme. Let Ar(τ̃ , z) represent the
retrieved field in terms of the new moving frame coordinates
τ̃ = t + z/c, z = z. In this frame, the field equation reads

− ∂
∂z Ar(τ̃ , z) = iβ exp{iωoτ̃ }S(τ̃ , z), (16)

where S(τ̃ , z) is comprised of the first revival of the atomic
coherence previously excited by the signal field, and of
the instantaneous response of the medium to the retrieved
field. Components S(1)(τ̃ , z) and S(0)(τ̃ , z), as defined in
equation (10), respectively describe those two contributions.
Substitution into equation (16) leads to

− ∂
∂z Ãr(ω, z) = ωp

2c {iχ(ω)Ãr(ω, z)

+ 2κ̃ (2π/δ)χ ′′(ω)Ãp(ω, z)}. (17)

Solving in z and Fourier transforming back to the time domain
lead to the retrieved field expression at the medium output, i.e.
in the front side at z = 0:

Ar(τ̃ , 0) = κ̃ (2π/δ)

∫ ∞

−∞

dω

2π
�(ω)Ãp(ω, 0) exp(−iωτ̃ ),

(18)

where the complex efficiency �(ω) reads

�(ω) = 1 − exp[iωpχ(ω)L/c]

{1 − iχ ′(ω)/χ ′′(ω)} . (19)

With absorption teeth being much narrower than their
spacing, κ̃ (2π/δ) is close to 1. Further assuming G(�) to
be continuous, one can make factor {1 − exp[iω

c χ(ω)L]}
arbitrarily close to 1 over the signal spectral range by
increasing the medium thickness L. Still the signal is not
recovered with 100% efficiency.

3
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The frequency-dependent weight factor 1/[1 −
iχ ′(ω)/χ ′′(ω)] distorts and depletes the retrieved sig-
nal. The quantity χ ′(ω)/χ ′′(ω) represents nothing but the
spatial phase mismatching that builds up over a round trip
in the medium, down to the inverse absorption coefficient
corresponding to the penetration depth. All the spectral
components are depleted independently. Indeed, the phase
mismatch builds up between the atoms and the signal field, at
each frequency.

At this stage, the difference with CRIB can be clearly
understood. In AFC-based memory, the part of information in
channel ω that is captured at depth z undergoes the frequency-
dependent ωpχ

′(ω)z/c phase shift, down to the storage
position. The same phase shift is accumulated on the way
back to the input surface when the signal is restored, which
doubles the phase shift. In CRIB, the same superluminal
feature takes place. However, information captured in channel
ω is transferred to channel −ω when the frequency detuning
is reversed. Hence, because χ ′(ω) is an odd function of ω,
the information initially captured at ω, and retrieved at −ω,
undergoes phase shift −ωpχ

′(ω)z/c on the way back to the
material surface, which cancels the phase shift accumulated
on the way in [31]. This is made possible because the detuning
reversal does not affect propagation. Hence, the susceptibility
remains unchanged throughout the process.

Despite the non-reversibility of AFC-based memory,
the phase shift vanishes in the infinitely broad AFC limit
considered in previous works. However, retrieval may be
significantly altered when the signal bandwidth becomes
similar to the AFC width. Indeed, χ ′(ω)/χ ′′(ω) variation
over the AFC spectrum may exceed unity. For instance, in the
frame of the previously considered AFC Gaussian envelope,
χ ′(ω)/χ ′′(ω) ∼= ρω/�in for |ω|/�in < 1, with ρ ∼= 1.385.
Then, χ ′(ω) equals χ ′′(ω) at |ω/�in| = 0.425. This may
strongly affect both the QE and fidelity, as discussed in the
following.

3.1. Quantum efficiency

The memory QE is defined as

Q =
∫ ∞
−∞ dω〈Ã+

r (ω, 0)Ãr(ω, 0)〉∫ ∞
−∞ dω〈Ã+

p (ω, 0)Ãp(ω, 0)〉 , (20)

where quantum averaging is performed over the initial state of
the light field. The spectral density of the input light intensity
can be expressed as Ip(ω) =

〈
Ã+

p (ω, 0)Ãp(ω, 0)
〉
. Then,

substitution of equations (18) and (19) into equation (20) leads
to

Q = [κ̃ (2π/δ)]2Q̃, (21)

where

Q̃ =
∫ ∞

−∞
dω|�(ω)|2Ip(ω)

/∫ ∞

−∞
dω Ip(ω). (22)

QE critically depends on the narrowness of the absorbing teeth
through factor [κ̃ (2π/δ)]2 that approaches 1 when b � δ.

As an illustration, let a Gaussian-shaped signal Ip(ω) =
Ip(0)

√
ζ

π
1

�p
exp

(
−ζ ω2

�2
p

)
be captured through the previously

0.0 0.2 0.4 0.6 0.8 1.0
p in

0.6

0.7

0.8

0.9

1.0
QG

Figure 2. QE QG as a function of relative bandwidth �p/�in when
both the AFC and the captured signal are Gaussian shaped. Atomic
decoherence is ignored and the optical depth is infinite.

considered Gaussian-shaped AFC. Under assumption of
infinite optical depth, QE can be expressed for �p/�in < 1 as

QG = [κ̃ (2π/δ)]2√π/2

0.9|�p/�in| exp

{
1

2(0.9�p/�in)2

}

× Erfc

{
1

0.9
√

2|�p/�in|

}
. (23)

The corresponding QE is plotted in figure 2 as a function
of the relative bandwidth �p/�in. It shows that QE drops
below 90% when the signal bandwidth exceeds 0.4 times the
AFC width. The decrease can be even stronger for different
spectral shapes, such as a Lorentzian.

The extension to multiple temporal mode storage is
straightforward when the different temporal modes do not
overlap. Then multi-mode QE coincides with the single-mode
efficiency, provided the comb shape does not change during
the capture of the mode train.

3.2. Fidelity

The memory fidelity is expressed in terms of the output state
projection on the input state. Let the signal field be prepared
in a single photon state

|ψin(t)〉 =
∫ ∞

−∞
dω fp(ω) exp{−iωt}a+(ω) |0〉, (24)

where the creation and annihilation operators a+(ω) and
a(ω′) obey the commutation relation [a(ω′), a+(ω)] = δ(ω−
ω′), and where the spectral distribution fp(ω) satisfies the
normalization condition∫ ∞

−∞
dω| fp(ω)|2 = 1.

The normalized output state can be derived from equation (18)
as

|ψout(t)〉 =
∫ ∞

−∞
dω�(ω) fp(ω) exp[−iω(t − T )]a+(ω) |0〉/[∫ ∞

−∞
dω|�(ω) fp(ω)|2

]1/2

, (25)

where T represents the total storage duration. Then, defining
fidelity as F = |〈ψout(t)|ψin(t − T )〉|2, one readily obtains

F =
∣∣∣∣
∫ ∞

−∞
dω�(ω)| fp(ω)|2

∣∣∣∣
2 /∫ ∞

−∞
dω|�(ω) fp(ω)|2.

(26)

4
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Fidelity can be optimized independently of QE. Fidelity
does not depend on tooth narrowness, in contrast to QE
(see equation (21)). Moreover, while QE drops to zero
at small optical density, fidelity can approach 100% in
the same conditions. Indeed, �(ω) ∼= ωpχ

′′(ω)L/c when
ωpχ

′′(ω)L/c � 1 and, provided absorption is uniform over
the signal bandwidth, substitution into equation (26) leads
to F ∼= 100%, which is consistent with recent experimental
results [28, 29].

In the extreme opposite conditions of infinite optical
density, a situation of interest is offered by symmetric spectral
shapes, with | fp(ω)|2 = | fp(−ω)|2. Broadband symmetric
shapes should indeed be used to make the best of the memory
multi-mode capacity. Then, since χ ′(ω) = −χ ′(ω), equation
(26) reduces to

F =
∫ ∞

−∞
dω

| fp,s(ω)|2
{1 + [χ ′(ω)/χ ′′(ω)]2} . (27)

In this situation, phase mismatching affects fidelity in quite
the same way as QE (see equation (22)).

In summary, phase mismatching significantly alters both
QE and fidelity of finite-bandwidth AFC QM. In the following
section, we propose a method to compensate dispersion effects
in order to take better advantage of the AFC bandwidth and of
the memory multi-mode capacity.

4. Modified AFC scheme with compensated spectral
dispersion

As discussed above, the AFC memory is affected by spectral
dispersion. Dispersion leads to superluminal propagation
features and to phase mismatching of the retrieved field. Phase
mismatching reflects incomplete light-atom reversibility, in
contrast with the CRIB scheme [31]. In order to restore
reversibility, we propose a MAFC scheme that cancels the
dispersion effect.

While fast light features spoil AFC memory reversibility,
the opposite slow light effect can also be observed
in the context of linear absorption, as discussed [32]
and experimentally demonstrated recently [33–35]. Indeed,
slow light is not specific to nonlinear processes such as
electromagnetically induced transparency, but can also merely
result from the existence of a transparency window within an
absorption profile. This suggests that we should compensate
the AFC superluminal effect by simply inserting the memory
comb within the transparent spectral interval between two
absorbing lines.

The MAFC principle is sketched in figure 3. The
AFC occupies the central part of the absorption profile. A
rectangular shape is assigned to the Go(�) AFC envelope.
This function is flat over the �in-wide memory bandwidth and
drops to zero outside this interval. On the sides of the AFC, the
absorption lines Gs(�+�o/2) and Gs(�−�o/2) generate the
slow light effect that will cancel the fast light feature induced
by the AFC. The line centres are separated by interval �o.
Spectral hole burning techniques [26, 28, 34, 36] can be used
to shape such a complex absorption profile.

Figure 3. Modified AFC. The AFC is contained between two
absorbing lines. Those lines give rise to positive dispersion and the
slow light effect that compensates the AFC-induced negative
dispersion and the fast light feature.

Let the normalized rectangular AFC envelope be defined
as

Go(�) =
{ 1

�in
, |�| < �in/2

0 , |�| > �in/2.
(28)

The absorption lines on the sides are given by the following
normalized shape:

Gs(� ± �o/2) = �

π [(� ± �o/2)2 + �2]
. (29)

Rectangular-shaped AFC was typical in recent experiments
[21, 26, 28, 29, 36]. However, the role of the side parts of the
absorption profile was not discussed.

We aim at making the real part of susceptibility vanish
over the AFC. We rely on two adjustable parameters, namely
the relative amplitude fs of the side lines and their relative
spacing �o/�in, to optimize the suppression of dispersion
effects.

One should be aware that the present AFC departs from
our assumptions in sections 2 and 3. In those sections, the
AFC envelope was represented by a continuous function.
Therefore, one could make the optical density arbitrarily large
over the entire processing spectral range by increasing the
medium thickness L. In the present case, the AFC is sharply
cut on the edges. Therefore, signal wings outside the �in-wide
band are unavoidably lost. Another consequence of the AFC
rectangular shape is to invalidate the slowly varying envelope
assumption we made in section 2 and especially in equation
(8). However, this only affects the very edges of the AFC, over
a spectral range of order b � �in. Hence, we shall neglect the
corresponding error.

Let us examine the signal transmission over the AFC
spectral interval [−�in/2,�in/2]. According to equations
(13)–(15), the real and imaginary parts of AFC susceptibility
read

χ ′
A(ω) = c

ωp
αo

1

π
Ln

(
�in/2 − ω

�in/2 + ω

)
(30)

χ ′′
A (ω) = − c

ωp
αo, (31)

where

αo = 2π
βg

�in

1

κ(0)δ
. (32)

5



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 124003 S A Moiseev and J-L Le Gouët
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Figure 4. Variations of χ ′
A(ω) (dashed line), χ ′

s(ω) (dash-dotted
line) and χ ′

M(ω) (solid line) over the AFC spectral range. The AFC
fast light effect (negative dispersion) is compensated by the slow
light effect (positive dispersion) induced by the side lines.

Under assumption � � �o − �in, the side lines stay outside
the AFC. Residual absorption by those lines at the AFC centre
is expressed by the absorption coefficient

αs(0) = 4 fs
βg�

(�o/2)2 . (33)

This does not affect the signal round trip through the AFC
medium provided

2αs(0)

αo
= 4

π
fsκ(0)δ

��in

(�o/2)2 � 1. (34)

As for the real part of susceptibility, the side lines bring
the contribution

χ ′
s(ω) = c

ωp
αo

1

π
fsκ(0)δ

2ω�in

(�o/2)2 − ω2
(35)

over the AFC range, where � � �o/2 − |ω|. The real part
of MAFC susceptibility reads χ ′

M(ω) = χ ′
A(ω) + χ ′

s(ω) and
vanishes to third-order expansion of equations (30), (35) in
ω/�in, provided the following relations are satisfied:

�o =
√

3�in, fsκ(0)δ = 3
2 . (36)

The spectral variations of χ ′
A(ω), χ ′

s(ω) and χ ′
M(ω) are

displayed in figure 4, showing the compensation of AFC fast
light by the slow light effect from the side lines. As a result, in
the αoL � 1 large optical density limit, the efficiency factor
|�(ω)|2 of the MAFC gets close to unity over the entire AFC
bandwidth, unlike the original AFC scheme, as illustrated in
figure 5.

Dispersion cancellation impacts on QE and fidelity, as
illustrated in figure 6. In this figure, the incoming signal is
assigned a Gaussian spectrum, centred at the middle of the
AFC band and the optical density is assumed to be large. As
discussed in section 3.2, QE and fidelity are expressed by
the same number in this situation. Unlike conventional AFC
parameters, MAFC QE and fidelity keep very close to an ideal
process, with complete elimination of dispersion. However, as
pointed out above, both QE and fidelity suffer from the loss of
spectral components lying outside the AFC processing band,
even when dispersion effects completely cancel.
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Figure 5. AFC (dash-dotted line) and MAFC (solid line) spectral
distribution of 1/

(
1 + [χ ′(ω)/χ ′′(ω)]2

)
over the AFC bandwidth.
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Figure 6. Gaussian signal recovery. QE and/or fidelity are displayed
as a function of the signal spectrum FWHM, normalized to the AFC
bandwidth. AFC (dash-dotted line) and MAFC (solid line) expected
accomplishments are displayed together with a perfect operation
result (dotted line), with complete elimination of dispersion.

5. Discussion and conclusion

Infinite bandwidth, AFC-based, quantum memory (QM) may
offer 100% quantum efficiency (QE) and fidelity when the
signal is retrieved in the backward direction. This is no
longer true when the memory spectral width is limited. Since
the dispersive part of susceptibility no longer vanishes, the
retrieved signal is no longer spatially phase matched to the
atomic coherences. In contrast with CRIB, the mismatching
accumulated during the storage step is not compensated during
the recovery stage, which reveals the intrinsic non-reversibility
of AFC.

After demonstrating these features, we have proposed a
modified AFC (MAFC) scheme that restores spatial phase
matching and reversibility. By setting absorption lines on the
sides of the AFC, we reduce the group velocity. Hence, the
superluminal effect caused by the AFC itself is cancelled by a
slow light effect.

One may wonder whether MAFC generates a significant
gain in memory bandwidth. This question arises if one
assumes that the AFC can be etched over all the available
inhomogeneous width. Indeed, about half of this available
width is wasted by implementing the MAFC. The net gain
in bandwidth at 90% QE appears to be small. However,
one should be aware that much higher QE is required for
quantum computing applications [37]. In addition, engraving
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a high-efficiency AFC, with large average optical depth,
is a difficult challenge, as testified by the actual experimental
achievements. In existing demonstrations, the AFC has been
etched over the narrowest possible range, hardly exceeding the
signal bandwidth. In this context, the MAFC makes sense.

The analysis and the method to cure non-reversibility
could be extended to recently proposed photon echo [23–25]
or Raman echo [17, 38–41] QM schemes based on persistent
inhomogeneous broadening.
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