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Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable
delay. We show how this technique can be implemented in solid state systems by appropriately shaping the
inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic
solution to entangle remote rare-earth-metal-doped solids in a heralded way.
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I. INTRODUCTION

The creation of correlated Stokes–anti-Stokes photon pairs
in atomic ensembles via spontaneous Raman emission [1]
plays a central role in quantum communication, starting
with the implementation of quantum repeaters [2]. The basic
principle requires an ensemble of lambda systems coupled to
a pair of optical laser fields, see Fig. 1. An off-resonant laser
pulse, the write pulse, produces a frequency-shifted Stokes
photon via spontaneous Raman emission. The detection of
this Stokes photon in the far field, such that no information is
revealed about which atom it came from, heralds the creation of
a single collective atomic spin excitation. A remarkable feature
of such a collective atomic state is that it can be read out very
efficiently. A resonant laser pulse, the read pulse, allows one,
through a collective spontaneous Raman emission, to ideally
map the collective spin excitation into an anti-Stokes photon
propagating in a well-defined spatiotemporal mode. This
provides a photon-pair source with a very special property:
The delay between the Stokes and anti-Stokes photons can
be controlled by choosing the timing between the write and
read pulses. Such a source has inspired many experiments
in atomic gases, including the first single-photon storage
in an atomic ensemble [3,4], the first heralded creation of
entanglement between atomic ensembles [5], and even the
implementation of the first elementary blocks of quantum
repeaters [6]. Despite this impressive body of work, there
are strong motivations to use more practical systems in the
solid state. Rare-earth-metal-doped solids seem naturally well
suited, at least at first sight. They are widely available thanks
to their use for solid-state lasers. Thanks to their particular
electronic structure, they can be seen as a frozen gas of
atoms, with optical and spin transitions featuring excellent
coherence properties. Moreover, they have already shown
excellent capability to store light for long times [7] with
high efficiency [8] and negligible noise [8,9]. Last but not
least, they have a large inhomogeneous absorption spectrum
and narrow homogeneous lines leading to a high temporal
multimode capacity [10].

All rare-earth-metal elements have in common weak
dipole moments on the relevant 4f -4f transitions and large
inhomogeneously broadened spectra due to the interaction
with the host crystal. These two properties make the creation
of Stokes–anti-Stokes pairs in rare-earth-metal-doped solids

challenging. In hot alkali-metal gases, where there is also an
inhomogeneous broadening due to the Doppler effect, spon-
taneous Raman processes have been successfully performed
[4] with a write pulse far detuned from the resonance; the
probability p for the emission of a Stokes photon in a given
mode being enhanced by the use of large write intensities.
However, in rare-earth-metal-doped solids, where the dipole
moments are typically two to three orders of magnitude
weaker, the required intensities would be, at best, difficult
to achieve. For resonant write pulses, atoms are transferred
into the excited state, leading to a higher p. But their energy
difference, due to the inhomogeneous broadening, makes them
distinguishable. They can no longer interfere, which makes the
readout of the collective excitation inefficient [11].

We propose a simple solution to this problem. It consists in
shaping the spectral inhomogeneous broadening of the optical
transition so that the atomic dipoles rephase at the readout
step, leading to an efficient emission of the anti-Stokes photon
even when resonant write pulses are used. Several shaping
methods are available to force the atomic dipoles to rephase.
For example, the inhomogeneous broadening could be shaped
into a narrow absorption line with a reversible and controllable
broadening [12]. In what follows, we focus on a shaping
based on a comblike structure composed with periodic narrow
peaks [13]. This provides a temporally multiplexed version
of a spontaneous Raman source, similarly to the proposal
of Ref. [14] in atomic gases but without the need for a
cavity. Since spontaneous Raman-based protocols are well
suited for entangling remote atomic ensembles in a heralded
way [1] without the need for ultranarrowband pair sources,
our proposal paves the way for the implementation of the first
elementary link of quantum repeaters with solid-state devices.

II. WRITE STEP

Let us start by a description of the write step. We consider
a medium consisting of lambda atoms (as depicted in Fig. 1)
initially prepared in the state g. The optical transition g-e is
shaped into a frequency comb made of narrow peaks with a
characteristic width γ, separated by �0, and spanning a large
atomic frequency range �. The g-s transition is considered
to be homogeneous. A weak write laser pulse with the Rabi
frequency �w(t) is sent through the medium to transfer a small
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FIG. 1. (a) Basic level scheme and (b) pulse sequence for the
creation of correlated Stokes–anti-Stokes pairs via spontaneous
Raman emission. All atoms start in g. The inhomogeneously
broadened optical transition is shaped into an atomic frequency
comb. A resonant write pulse �w excites the g-e transition, making
possible the spontaneous emission of a Stokes photon. The detection
of a Stokes photon (at time td ) is uniquely correlated with the
creation of a single collective atomic excitation corresponding to
one excitation in S delocalized over all the atoms. This collective
excitation can be mapped very efficiently into an anti-Stokes photon
using a resonant read pulse �r (at time τ + td ) and benefiting from
the echo-photon-type re-emission (at time 2π/� + τ ) inherent to
inhomogeneous transition shaped into a frequency comb.

part of the atoms in the excited state e in such a way that it
can spontaneously decay into the level S by emitting Stokes
photons. Taking the absorption into account, the write pulse
drives the atoms into

|ψw〉 =
N∏

j�1

⎛
⎜⎜⎜⎝ 1

nj

(
1 − 1

2
θ2

0 e−ᾱzj

)
︸ ︷︷ ︸

:=Gj

|gj 〉 + eikwzj
θ0e

−ᾱzj /2

nj︸ ︷︷ ︸
:=Ej

|ej 〉

⎞
⎟⎟⎟⎠.

Here nj ensures the normalization, θ0 = 1
2

∫
ds �w(s) � 1

refers to the area of the write pulse at the entrance of the
crystal, and kw corresponds to its wave number. zj is the
position of the j th atom within a medium of length L and
N is the total number of atoms. ᾱ is the absorption per unit
length of the atomic medium. It is proportional to the ratio
between the absorption per peak α and the finesse F of the
comb (cf. below). For concreteness, we consider an atomic
distribution made of Gaussian peaks with full width at half
maximum (FWHM) γ so that ᾱ = α

F

√
π

4 ln 2 where F = �0/γ

(see Appendix). Note that this shaping, which is at the heart
of memories based on the atomic frequency comb [13], is
known to produce a photon echo-type of re-emission in a
well-defined spatial mode at time 2π/�0. Here, on the other
hand, we look at the spontaneous emission of a Stokes photon
at time td < 2π/�0 and we benefit from the efficiency of the

photon-echo-like re-emission for the readout of the atomic
spin wave.

III. SPONTANEOUS EMISSION OF STOKES PHOTONS

Let us consider the Stokes field which propagates in the
forward direction with the carrier frequency ωS . Its envelope
is described by the slowly varying quantum operator [15]

Ês(z,t) =
√

L

2πc
eiωs (t−z/c)

∫
dωâω(t)eiωz/c. (1)

Under the dipole and rotating wave approximation, the inter-
action between the Stokes field and the medium is governed
by the Hamiltonian

Hint = −h̄g

√
L

2πc

∑
j

∫
dωâωeiωzj /c |e〉〈s|j + H.c., (2)

where g = ℘
√

ωs

2h̄ε0AL
is the atom-field coupling constant with

℘ the dipole moment of the e-s transition and A the interaction
section. The equations of motion for the Stokes field and for
the atomic coherence σ

j
se(t) = |s〉〈e|j eiωs (t−zj /c) are given by(

d

dt
+ c

d

dz

)
Ês(z,t) = igL

∑
j

δ(z − zj )σ j
se, (3)

d

dt
σ j

se = −i�jσ j
se − igÊs(zj ,t)σ

j
z,s , (4)

where �j = ω
j
es − ωs is the frequency detuning and σ

j
z,s =

|e〉〈e|j − |s〉〈s|j is approximated by its mean value θ2
0 e−ᾱzj in

what follows. Plugging the formal solution of Eq. (A3) into
Eq. (A2), we obtain the expression of the Stokes field at z (see
Appendix)

Ês(z,t) = e
ᾱ
2

∫ z

0 θ2
0 e−ᾱz′ dz′ Ês(0,t)

+ i
gL

c

∑
j |zj <z

e
ᾱ
2

∫ z

zj
θ2

0 e−ᾱz′ dz′
e−i�j tσ j

se(0). (5)

We considered, for simplicity, that the transitions g-e and s-e
have the same dipole moments. Since the state of the complete
system after the write pulse is given by |�w〉 = |ψw,0〉 where
|0〉 is the vacuum for the electromagnetic field, the average
number of Stokes photons emitted at time td in a mode of
temporal duration

√
2π/� is given by

√
2πc

�L
〈�w| Ê †

s (L,td )Ês(L,td ) |�w〉 ≈ θ2
0 (1 − e−ᾱL), (6)

for θ0 � 1 (see Appendix). This formula is very useful and can
easily be used in practice. Note first that the relative number
of atoms transferred into the excited state by the write pulse

is given by 1
N

∫ L

0 θ2
0 e−ᾱz Ndz

L
= θ2

0
ᾱL

(1 − e−ᾱL). Therefore, the
formula (6) tells us that the average number of photons in
a mode with a duration corresponding to the inverse of the
overall spectrum is merely the optical depth ᾱL times the
relative number of atoms in the state e. In the rest of the article
we will be interested in the regime where the optical depth ᾱL

is large enough to get high readout efficiencies, but the write
pulse is weak enough to get a high signal-to-noise ratio for the
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readout (cf. below). In this case, the success probability for the
emission of a Stokes photon (6) reduces to p ≈ θ2

0 .

IV. READOUT EFFICIENCY

We now calculate the efficiency of the readout process. At
time τ after the detection of the Stokes photon, a read pulse
resonant with the transition s-e and associated with the Rabi
frequency

∫
ds�r (s) = π goes through the atomic ensemble

and exchanges the population of states s and e. For θ0 � 1,

the resulting atomic state is given by (see Appendix)

|ψr〉 = ζ

N∑
j�1

eizj (kw−kr−ωs/c)e−ᾱzj /2e−i�j td |ej 〉

×
∏
� �=j

(G�e
−iωgs (td+τ ) |g�〉 + E�e

iz�kr e−iω�
es (td+τ ) |s�〉),

(7)

with ζ = (ᾱL)
1
2 /[N (1 − e−ᾱL)]

1
2 . Consider a re-emission

associated with an anti-Stokes mode ÊAS(z,t) propagating
in the backward direction. Following the method presented
before (under the assumption that |e〉〈e|j − |g〉〈g|j ≈ −1) we
find at z = 0

ÊAS(0,t) = e− ᾱ
2 LÊAS(L,t)

+ i
gL

c

∑
zj

e− ᾱ
2 zj e−i�j [t−(τ+td )]σ j

ge(τ + td ), (8)

so that, at time 2π/� + τ where all the atoms are in phase,
the efficiency of the readout process is

√
2πc

�L
〈�r | Ê †

AS(0,2π/� + τ )ÊAS(0,2π/� + τ ) |�r〉

=
(

1 − e− αL
F

√
π

4 ln 2

)
e
− π2

2 ln 2 F2 . (9)

One sees that there is a tradeoff between absorption and
dephasing. However, for large enough αL and optimized F,

the readout efficiency can be arbitrarily close to 100%. Let us
directly note some of the advantages of spontaneous Raman
protocol over other schemes. First, the proposal based on
spontaneous Raman protocols is significantly more efficient
than a memory where the photon has first to be absorbed
before being reemitted. It leads to a much higher efficiency
for small optical depths (see Appendix). Furthermore, since
the readout of spontaneous Raman protocols is conditioned
on the detection of a Stokes photon, the retrieved signal is
not affected by the nonunit coupling efficiency of an input
photon into the memory (e.g., due to imperfect spectral
filters, nonunit coupling into monomode fibers, and so on,
see Appendix). Contrary to the photon-pair source based on
rephased amplified spontaneous emission [16], our proposal
provides highly correlated pairs even for large optical depths
where the retrieval efficiency is high.

V. NOISE RATE

We now account for intrinsic noise. The conditional state
(7) that we used to calculate the efficiency of the readout
process corresponds to the ideal case where a single Stokes
photon has been emitted and detected. However, many atoms

prepared in the excited state by the write pulse can emit
Stokes photons in all the spatiotemporal modes. This unwanted
emission populates the state s so that after the interaction
with the read pulse, atoms occupy the excited state e and can
produce spontaneous noise in the anti-Stokes mode. To take
this noise into account, we consider the worst case where all
the atoms prepared in the excited state by the write pulse
decay on the e-s transition. Tracing over the Stokes photons,
the atomic state after the interaction with the read pulse is well
approximated by

�n =
N⊗

j�1

[(
1 − θ2

0 e−ᾱzj
) |gj 〉〈gj | + θ2

0 e−ᾱzj |ej 〉〈ej |
]
. (10)

The noise is then deduced from
√

2πc

�L
tr[Ê †

AS(0,2π/� + τ )ÊAS(0,2π/� + τ )ρn]

= θ2
0

2
(1 − e−2ᾱL),

where ρn = �n ⊗ |0〉〈0|. For large enough αL and optimized
F , the signal-to-noise ratio R is lower bounded by

R � 2

θ2
0

= 2

p
. (11)

One can thus conclude that despite the inhomogeneous broad-
ening inherent to solid-state systems, our protocol achieves
similar characteristics to the ones obtained in cold atomic
gases; R can be very high provided that the number of Stokes
photons per mode is low.

VI. FEASIBILITY

For concreteness, we now discuss the experimental feasibil-
ity of spontaneous Raman processes in rare-earth-metal-doped
materials. Pr:Y2SiO5 is a very promising material for initial
experiments since excellent hyperfine coherence [17] and
quantum memory efficiencies of order 70% [8] have already
been demonstrated. The frequency difference between the
Stokes and the anti-Stokes transitions is only of some hundreds
of MHz, so no problems in relation with group velocity
dispersion arise. The main drawback of praseodymium is
the small hyperfine separation (a few MHz) which limits
the number of peaks within the atomic comb and thus the
multimode capacity (cf. below). If we consider the 3H4-1D2

transition at 606 nm, one can realistically shape combs with
individual peaks of FWHM γ ≈ 30 kHz [18] over a spectral
range of � ≈ 2 MHz and an absorption per peak of order
αL ≈ 10 [19] (the branching ratio is approximated by 1). For
F = 5, p ≈ 0.1 can be achieved provided that the write pulse
satisfies θ2

0 = 0.1 at the entrance of the crystal. This would lead
to a readout efficiency of 65% and a signal-to-noise ratio larger
than 10 under the assumption that the noise is dominated by
the spontaneous emission. Now consider a setup involving two
Pr-doped solids located 1 km apart so that the corresponding
Stokes modes are combined on a beamsplitter at a central
station. Further consider a fiber attenuation of 9 dB/km,
corresponding to 606-nm photons [20] and assume a coupling
efficiency into optical fibers of ηc = 50%. The average time
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to detect a Stokes photon after the beamsplitter and thus to
entangle the two crystals is T = 1

2rpηcηt ηd
where ηt , ηd are the

transmission and detection efficiencies and r is the repetition
rate. Assume ηd = 70%. For p = 0.05 where the fidelity of
the entanglement is F = 1 − 3p(1 − ηcηtηd ) ≈ 0.85 [2], one
finds T ≈ 0.1 s for a repetition rate of r = 1 kHz so that a few
hours would be sufficient for performing a full tomography.
Note that the fiber lengths have to be actively stabilized
to guarantee an interferometric phase stability on this time
scale [2].

VII. CONCLUSION

Our approach opens an avenue toward the heralded entan-
glement of remote solids. Beyond that, the present scheme
might be useful for quantum communications since sponta-
neous Raman processes lead to the production of narrowband
pairs well suited for storage in atomic ensembles. Let us finally
emphasize that in our protocol, spin waves created at different
times, say td1,td2,td3, . . . , are independent and if the read
pulse is sent at time τ after the first detection, these spin
waves rephase at times τ + 2π/�,τ + 2π/� − (td2 − td1),
τ + 2π/� − (td3 − td1), . . . . The number of spin waves that
can be stored is roughly given by the number of peaks
composing the comb (see Ref. [13] and the Appendix) and
can be merely increased by making use of a wider range of
the inhomogeneous broadening. In the framework of quantum
repeaters, this temporal multiplexing has been shown to greatly
enhance the distribution rate of entanglement [21].
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APPENDIX

1. Atomic distribution

For concreteness, we consider an atomic spectral distribu-
tion shaped into a frequency comb made with Gaussian peaks

�(�) := �0

2πγ̃ �
e
− �2

2�2

∞∑
j=−∞

e
− (�+j�0)2

2γ̃ 2 , (A1)

where � denotes the overall width, �0 is the peak separation,
and γ̃ is the width of an individual peak.

We are interested in the regime � 
 �0 
 γ̃ where a
large number of well-separated peaks spans a large spectral
bandwidth. In this regime, one can check that

∫
d��(�) = 1.

We define the finesse of the comb as the ratio of the peak
separation over the FWHM of a single peak γ, that is,

F := �0

γ
= 1√

8 ln 2

�0

γ̃
.

Note that the Fourier transform of the atomic spectral distri-
bution

�̃(t) :=
∫

d��(�)e−i�t ,

is also a series of Gaussian peaks with individual peak width
1/�, separated by 2π/�0, and spanning the overall temporal
width 1/γ̃ .

Further, note that we consider a perfect three-level system
(without additional levels) and we assume that the optical
transitions g-e and e-s have the same dipole moments.
Therefore, the absorption of g-e with all the atoms in g is the
same as the one associated to e-s if all the atoms are prepared
in s.

2. Emission of Stokes photons

We now detail the way to find the solution of equations
associated to the dynamics of the Stokes field(

d

dt
+ c

d

dz

)
Ês(z,t) = igL

∑
j

δ(z − zj )σ j
se, (A2)

d

dt
σ j

se = −i�jσ j
se − igÊs(zj ,t)σ

j
z,s . (A3)

First, we plug the formal solution of Eq. (A3)

σ j
se(t) = −ig σ j

z,s

∫ t

0
dt ′e−i�j (t−t ′)Ês(zj ,t

′) + e−i�j tσ j
se(0),

(A4)

into Eq. (A2) and since we consider Stokes modes with a
characteristic duration τs 
 L/c, we can neglect the temporal
retardation effects in the crystal [i.e., the time derivative in
Eq. (A2)]. This leads to

d

dz
Ês(z,t) = i

gL

c

∑
j

δ(z − zj )e−i�j tσ j
se(0)

+ g2L

c

∑
j

δ(z − zj )σ j
z,s

∫ t

0
dt ′e−i�j (t−t ′)Ês(zj ,t

′).

(A5)

We then replace σ
j
z,s by its mean value calculated on the state

|ψw〉 (i.e., σ
j
z,s ≈ θ2

0 e−ᾱzj ) and we take the continuous limit∑
j → ∫ L

0
N
L
dz′ ∫ ∞

−∞ d��(�), N being the total number of
atoms and L the length of the medium. The last term of
Eq. (A5) reduces to

g2N

c
θ2

0 e−ᾱz

∫ t

0
dt ′�̃(t − t ′)Ês(z,t

′).

Since we are interested in the emission process which has a
typical duration τs, we only need to consider values of t −
t ′ of order τs . Considering the regime where τs � 2π/�0,

only the central peak of �̃ contributes and �̃(t − t ′) is well
approximated by

�̃(t − t ′) ≈ e−(t−t ′)2�2/2.

For �τs > 1, �̃(t − t ′) acts as a delta function

�̃(t − t ′) ≈ e−(t−t ′)2�2/2 ≈
√

2π

�
δ(t − t ′),
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and the equation for the Stokes field reduces to

d

dz
Ês(z,t) = i

gL

c

∑
j

δ(z − zj )e−i�j tσ j
se(0)

+ ᾱ

2
θ2

0 e−ᾱzÊs(z,t). (A6)

Here ᾱ, which corresponds to the optical depth per unit length,
is defined by

ᾱ :=
√

2π

c

g2N

�
. (A7)

In the main text, we introduced the optical depth per unit length
associated to the central peak α. It is given by α := g2N

c

�0
γ̃ �

so

that ᾱ = √
π

4 ln 2
α
F
.

It is then straightforward to check that the solution of
Eq. (A6) is given by

Ês(z,t) = e
ᾱ
2

∫ z

0 θ2
0 e−ᾱz′ dz′ Ês(0,t)

+ i
gL

c

∑
j |zj <z

e
ᾱ
2

∫ z

zj
θ2

0 e−ᾱz′ dz′
e−i�j tσ j

se(0). (A8)

To find the average number of Stokes photons per temporal
mode, we first evaluate the ket Ês(L,td ) |�w〉 . Since initially
there is no excitation in the Stokes mode |�w〉 = |ψw,0〉, we
obtain

Ês(L,td ) |�w〉= i
gL

c

∑
j

(
e

ᾱ
2

∫ L

zj
θ2

0 e−ᾱz′ dz′
e−i�j td e−iωszj /cEj |sj 〉

×
∏
k �=j

(Gk |gk〉 + Ek |ek〉)
)

|0〉 . (A9)

Note that each term of the sum has only one atom in the state
|sj 〉, so when taking the scalar product with the corresponding
bra, only the term with the same atom in 〈sj | will give a nonzero
contribution. Under the approximation |Ej |2 ≈ θ2

0 e−ᾱzj , one
gets

〈�w| Ê †
s (L,td )Ês(L,td ) |�w〉 = g2L2

c2

∑
j

e
ᾱ

∫ L

zj
θ2

0 e−ᾱz′ dz′
θ2

0 e−ᾱzj .

(A10)

Finally, we replace the sum over j by the integral expression.
Since there is no term with a spectral dependence, the integral
over � is carried out directly and gives 1. This yields to the
spatial density of photons

1

L
〈�w| Ê †

s (L,td )Ês(L,td ) |�w〉

= g2N

c2

∫ L

0
dz eᾱ

∫ L

z
θ2

0 e−ᾱz′ dz′
θ2

0 e−ᾱz

= g2N

ᾱc2
(eᾱ

∫ L

0 θ2
0 e−ᾱz′ dz′ − 1)

= g2N

ᾱc2
(eθ2

0 (1−e−ᾱL) − 1)

≈ �√
2πc

θ2
0 (1 − e−ᾱL),

where, at the last line, we expanded the exponential to the
first order. Consequently, the number of photons per temporal
mode of duration

√
2π/� is given by

√
2π

�

c

L
〈�w| Ê †

s (L,td )Ês(L,td ) |�w〉 ≈ θ2
0 (1 − e−ᾱL).

(A11)

Note that, in the general case, the number of photons emitted
in a temporal mode

√
2π/� is given by eᾱ

∫ L

0 〈σz,s 〉dz − 1. In
the particular case where all the atoms are prepared in e,

the average number of Stokes photons per mode is given by
eᾱL − 1. This agrees with the result presented in Ref. [16].

Further, note that the number of Stokes photons emitted per
write attempt is given by

2π

�0

c

L
〈�w| Ê †

s (L,td )Ês(L,td ) |�w〉 ≈
√

2π�

�0
θ2

0 (1 − e−ᾱL),

(A12)

and is thus roughly the product of the number of peaks
�/�0 composing the atomic frequency comb by the success
probability for the emission of a Stokes photon per mode. It
can thus be merely increased by making use of a wider range
of the inhomogeneous broadening.

3. Atomic state prepared by the Stokes photon detection

Consider the successful event where a Stokes photon is
detected at time td . The conditional atomic state ψd is obtained
by calculating the evolution of the initial state �w until the time
td and by projecting the resulting state into 〈0| Ês(L,td ). First,
let us directly note that the initial state can be written as |�w〉 =∏N

j�1(Gjσ
j
gs(0) + Eje

−iωszj /cσ
j
es(0)) |sj 〉 |0〉 where σ

j
gs(0) =

|gj 〉〈sj | . Since the state |sj 〉|0〉 is an eigenstate associated
to the eigenvalue 0, it stays unchanged in time. Furthermore,
the operator σ

j
gs merely acquires the phase term e−iωgs td . The

evolution of σ
j
es is obtained by plugging the field solution (A8)

back into the atomic solution (A4) and then taking the adjoint.
For θ0 � 1, we get

|ψd〉 = ζ

N∑
j�1

eizj (kw−ωs/c)e−ᾱzj /2e−i�j td |sj 〉

×
∏
� �=j

(G�e
−iωgs td |g�〉 + E�e

−iω�
es td |e�〉),

with ζ = (ᾱL)
1
2

[N(1−e−ᾱL)]
1
2
. Furthermore, at time τ after the de-

tection of the Stokes photon, a read pulse resonant with
the transition s-e and associated with the Rabi frequency∫

ds�r (s) = π goes through the atomic ensemble and ex-
changes the population of states s and e. Therefore, the atomic
state becomes

|ψr〉 = ζ

N∑
j�1

eizj (kw−kr−ωs/c)e−ᾱzj /2e−i�j td |ej 〉

×
∏
� �=j

(G�e
−iωgs (td+τ ) |g�〉 + E�e

iz�kr e−iω�
es (td+τ ) |s�〉).

We now have all the necessary ingredients to calculate the
efficiency of the readout process.
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4. Readout efficiency

The operator corresponding to the envelope of the
anti-Stokes field propagating in the backward direction is
given by

ÊAS(z,t) =
√

L

2πc
eiωAS(t+z/c)

∫
dωâω(t)eiωz/c. (A13)

Its evolution is given the equations of motion(
d

dt
− c

d

dz

)
ÊAS(z,t) = −igL

∑
j

δ(z − zj )σ j
ge, (A14)

d

dt
σ j

ge = −i�jσ j
ge + igÊAS(zj ,t)σ

j
z,g, (A15)

where σ
j
z,g = |e〉〈e|j − |g〉〈g|j is approximated by σ

j
z,g ≈ −1

in what follows. Using the methods presented before, we find
at z = 0

ÊAS(0,t) = e− ᾱ
2 LÊAS(L,t)

+ i
gL

c

∑
zj

e− ᾱ
2 zj e−i�j [t−(τ+td )]σ j

ge(τ + td ). (A16)

This solution allows one to evaluate the readout efficiency. For
a perfect spatial phase matching (all the wave vectors sum to
zero) the ket ÊAS(0,t) |�r〉 is given by (up to a global phase
factor)

i
gL

c
ζ

∑
j

e−ᾱzj e−i�j (t−τ ) |gj 〉
∏
� �=j

(G�e
−iωgs (td+τ ) |g�〉

+E�e
iz�kr e−iω�

es (td+τ ) |s�〉) |0〉 . (A17)

Projecting on the corresponding bra, one can show that the
spatial density of photons is well approximated by

1

L
〈�r | Ê †

AS(0,t)ÊAS(0,t) |�r〉

≈ g2L

c2
ζ 2

⎛
⎝∑

j

e−ᾱzj e−i�j (t−τ )Gj

⎞
⎠

×
(∑

�

e−ᾱz�ei��(t−τ )G∗
�

)
. (A18)

Each sum is then replaced by an integral and in the limit where
θ0 � 1

∑
j

e−ᾱzj e−i�j (t−τ )Gj ≈ N

L

∫ L

0
dze−ᾱz

∫ ∞

−∞
d��(�)e−i�(t−τ ).

(A19)

The spatial integral is carried out directly, while the spectral
integral is related to the Fourier transform of the atomic
distribution. We obtain

1

L
〈�r | Ê †

AS(0,t)ÊAS(0,t) |�r〉

≈ �√
2πc

(1 − e−ᾱL)|�̄(t − τ )|2. (A20)

By evaluating the Fourier transform of the chosen atomic
distribution (A1) for the first revival time (i.e., around t − τ =
2π/�0) we end up with

√
2π

�

c

L
〈�r | Ê †

AS(0,2π/�0 + τ )ÊAS(0,2π/�0 + τ ) |�r〉

≈ (1 − e−ᾱL)e− π2

2 ln 2 F2 .

The success probability to find an anti-Stokes photon within
a temporal mode of duration

√
2π/� centered at 2π/�0 + τ

approaches 1 for large enough optical depth provided that the
comb finesse is optimized.

Note that for a quantum memory based on an atomic
frequency comb, the efficiency has a similar expression but
the term (1 − e−ᾱL) is squared because the photon has first to
be absorbed before being reemitted. For weak optical depths,
a spontaneous Raman scheme is thus more efficient than the
corresponding quantum memory. For example, for αL = 0.1
and optimized finesses, the efficiency of the spontaneous
Raman scheme reaches 1% whereas it is limited to 0.1% for a
quantum memory based on the atomic frequency comb.

Further, note that for an emission in the forward direction,
the readout efficiency is given by

(ᾱL)2e−ᾱL

1 − e−ᾱL
e
− π2

2 ln 2 F2 , (A21)

and is limited to 65% by reabsorption instead of 54% for a
quantum memory [22].

5. Noise

The atoms excited at the write level can produce sponta-
neous noise in the anti-Stokes mode of interest. To get a lower
bound on the signal-to-noise ratio, we assume that all the atoms
transferred to the excited state at the write level decays on the
e-s transition. The evaluation of the resulting noise is similar
to the one associated to the collective emission, except that the
atomic state is now given by �n [see Eq. (10) in the main text].
By applying ÊAS(0,t) on ρn, we obtain

i
gL

c

∑
j

θ2
0 e− 3ᾱ

2 zj e−i�j [t−(τ+td )]eiωAS(τ+td ) |gj 〉〈ej |
⊗
� �=j

(
1 − θ2

0 e−ᾱz�
) |g�〉〈g�| + θ2

0 e−ᾱz� |e�〉〈e�| ⊗ |0〉〈0| .

(A22)

We then apply the adjoint Ê †
AS(0,t) before taking the trace.

One sees that for the trace to be nonzero, each term
e(iωAS(τ+td )) |gj 〉〈ej | has to be multiplied by the corresponding
operator σ

j
eg(t + td ) from Ê †

AS(0,t). Since the part of the state
on the second line has a trace equal to 1, we get

1

L
tr[Ê †

AS(0,2π/�0 + τ )ÊAS(0,2π/�0 + τ )ρn]

= g2L

c2

∑
j

θ2
0 e−2ᾱzj ,

and we conclude that the noise is bounded by θ2
0
2 (1 − e−2ᾱL)

by replacing the discrete sum by its integral expression and by
taking the duration of the anti-Stokes mode into account.
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Therefore, the signal-to-noise ratio R is bounded by

R � 2(1 − e−ᾱL)

θ2
0 (1 − e−2ᾱL)

e
− π2

2 ln 2 F2 ,

that is, for large optical depth and optimized finesse

R � 2

θ2
0

.

Note that, in the case of a quantum memory, the photon to
be stored is subject to many defective manipulations (e.g., to
the nonunit coupling efficiency into monomode fibers or to
imperfect spectral filters). This reduces the signal and hence
strongly limits the signal-to-noise ratio. This is a significant
drawback with respect to spontaneous Raman-based sources
where the readout efficiency is conditioned on the successful
detection of a Stokes photon.
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